電話|(03) 571-2121 #31654 & #31676
地址|300新竹市東區大學路1001號(交大光復校區)工程四館106室
電話|(03) 571-2121 #31654 & #31676
地址|300新竹市東區大學路1001號(交大光復校區)工程四館106室
*** You all are welcome to join !!!
Ultrathin Photonic Membrane for 2D Material Light–Matter Interaction
Dr. Ya-Lun HO
Research Center for Electronic and Optical Materials National Institute for Materials Science (NIMS), Japan
12/24(三)10:30~11:30 R546, Engineering Building 5, NYCU (GuanFu Campus) 工程五館5樓546室
※Host : Prof. Guo-En Chang 張國恩教授 (Department of Microelectronics)
Abstract:
Atomic-layer and two-dimensional (2D) materials show great promise for controlling light–matter interactions at the atomic scale. However, their ultrathin geometry limits the interaction volume and reduces optical coupling. To fully realize their potential, photonic structures that concentrate light into atomic-scale regions with minimal loss are required. Here, an ultrathin freestanding photonic membrane tailored for integrating atomic-layer and 2D materials is introduced. Owing to its substrate-free geometry, the membrane provides strong field confinement, restores out-of-plane symmetry, and suppresses radiative leakage. The design also enables Å-level tuning of high-Q resonances, where even a single ALD cycle produces a clearly measurable shift, demonstrating sensitivity to atomic-scale dielectric thickness variations.
Due to the strong field confinement and substrate-free geometry, the membrane effectively serves as a platform for transition metal dichalcogenide (TMD) monolayers such as WS2, WSe2, and MoS2, enabling their excitonic and nonlinear responses to couple efficiently to the membrane resonances. The membrane supports quasi-bound states in the continuum (quasi-BICs) that confine light around the monolayer and enhance exciton–photon coupling, resulting in clear increases in photoluminescence and second-harmonic generation (SHG) across a large area. The stronger SHG further enables polarization-resolved mapping of crystal orientation and grain boundaries. SHG spectroscopy also reveals several narrow peaks associated with different quasi-BIC modes, confirming resonant nonlinear enhancement on this freestanding membrane and demonstrating Å-level resonance engineering and large-area uniform enhancement—opening pathways toward advanced 2D material nanophotonic, quantum, and nonlinear photonic devices.



| 115學年度電機工程學系半導體組碩士班可指導教授一覽表 | |||||||
| 序號 | 姓名 | 職稱 | 甄試名額 | 考試名額 | 分機 | 辦公室 | |
| 1 | 柯明道 | 教授 | 每人至多1名 名額共6名 |
無 | 31573 | 工程四館644室 | mdker@nycu.edu.tw |
| 2 | 李義明 | 教授 | 1 | 52974 | 電子資訊中心622室 | ymli@nycu.edu.tw | |
| 3 | 許恒通 | 教授 | 2 | 55905 | 工程五館126A室 | hthsu@nycu.edu.tw | |
| 4 | 寒川誠二 | 教授 | 1 | 54623 | 交映樓602室 | seiji.samukawa.e2@nycu.edu.tw | |
| 5 | 張國恩 | 教授 | 2 | 31884 | 交映樓613室 | gechang@nycu.edu.tw | |
| 6 | 王仲益 | 副教授 | 2 | 31695 | 交映樓612室 | cywang72@nycu.edu.tw | |
| 7 | 李宗恩 | 助理教授 | 2 | 31635 | 交映樓611室 | telee@nycu.edu.tw | |
| 數據依系辦公室收到之指導教授協議書作為登記,老師招收學生事宜請與老師討論。 | |||||||
*** You all are welcome to join !!!
Ion-beam engineered silicon for room-temperature photodetection and monolithic integration at telecom wavelengths
※Speaker :Dr. Yonder Berencen/ Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
※Host : Prof. Guo-En Chang 張國恩教授 (Department of Microelectronics)
※Date : 2025-10-14 (Tuesday)
※Time : 10:30~11:30am
※Location :R546, Engineering Building 5, NYCU (GuanFu Campus) 工程五館5樓546室
※Abstract: Photonic integrated circuits (PICs) are widely recognized as a cornerstone for next-generation information technologies, offering orders-of-magnitude improvements in transmission speed, bandwidth, and energy efficiency compared to conventional electronics [1]. A critical building block of PICs is the photodetector operating in the optical telecommunication bands (1260-1625 nm), where silicon’s intrinsic transparency has traditionally necessitated hybrid integration of materials such as germanium [2,3]. However, this approach introduces major fabrication and cost challenges that limit scalability.
In this talk, I will present a new strategy that leverages ion-beam engineering of deep-level impurities in silicon to realize a high-performance, all-silicon, waveguide-coupled photodetector operating at room temperature in the telecom C band [4]. By driving dopant concentrations close to the solid- solubility limit, ion implantation enables efficient sub-bandgap absorption while preserving electronic transport properties. The resulting devices achieve a responsivity of 0.56 A/W, an external quantum efficiency of 44.8%, a bandwidth of 2 GHz, and a noise-equivalent power of 4.2×10-10 W/Hz1/2 at 1550 nm, performance metrics that meet the stringent requirements of optical communication systems.
Our results establish ion implantation as a scalable and CMOS-compatible pathway to monolithically integrate telecom-wavelength photodetectors into silicon PICs, addressing a long-standing challenge in silicon photonics. Beyond photodetection, this work illustrates how ion-beam techniques can unlock new functionalities in silicon, opening avenues for photonic quantum technologies and advanced optoelectronic integration.

本系於5月28日舉辦學士班《專題海報成果展》,總共有41篇海報參展。此次大學部專題海報成果展,期望有效激勵學生在期限內完成專題,加強學生們的主動性與積極度,並透過將一學期的研究成果組織成海報展示,幫助學生們反思和總結研究成果。現場同學們也通過彼此互相觀摩與競賽,更能彼此砥礪學習,進而提升系上專題研究的整體水準。
本次競賽感謝簡昭欣老師、李義明老師、柯富祥老師、曾銘綸老師、王仲益老師及李宗恩老師蒞臨擔任評審,並感謝部分專題指導老師們撥冗到場支持,給予認真努力的專題修課同學們鼓勵。
本次學士班《專題海報成果展》之「優秀專題獎」名單如下:
**[按照得獎學生的學號排序]
| 組別 | 專題學生姓 | 指導老師姓名 | 專題題目 |
| 奈米組 | 魏庭驊 | 李宗恩 | Comparative Study of In2O3 and IGZO TFTs with High-κ Capping : Enhanced Electrostatics and Thermal Stability of IGZO for M3D integration. |
| 奈米組 | 李昕岳 | 李宗恩 | Ultrathin Seeding Interlayer for Contact Resistance Reduction in Monolayer WSe₂ pFETs |
| 奈米組 | 謝宜錦 | 連德軒 | Enhancing Threshold Voltage Stability of Oxide Transistor Via Engineered Contact Transfer |
| 固態組 | 蘇子筌 | 李宗恩 | Contact Resistance Study in Scaled IGZO TFTs Using Transfer Length Method for 3D DRAM Application |
| 固態組 | 費荺翔 | 柯明道 | 積體電路之靜電放電防護設計 |
| 固態組 | 楊任勛 | 柯明道 | Analog Circuit Design for ESD Event Detector
靜電放電事件偵測器之電路設計 |
| 固態組 | 林汯淂 | 李宗恩 | A Study on Carrier Transport Properties in Ultra-Thin Body SOI Structures |

