電話|(03) 571-2121 #31654 & #31676
地址|300新竹市東區大學路1001號(交大光復校區)工程四館106室
電話|(03) 571-2121 #31654 & #31676
地址|300新竹市東區大學路1001號(交大光復校區)工程四館106室
*** You all are welcome to join !!!
Ultrathin Photonic Membrane for 2D Material Light–Matter Interaction
Dr. Ya-Lun HO
Research Center for Electronic and Optical Materials National Institute for Materials Science (NIMS), Japan
12/24(三)10:30~11:30 R546, Engineering Building 5, NYCU (GuanFu Campus) 工程五館5樓546室
※Host : Prof. Guo-En Chang 張國恩教授 (Department of Microelectronics)
Abstract:
Atomic-layer and two-dimensional (2D) materials show great promise for controlling light–matter interactions at the atomic scale. However, their ultrathin geometry limits the interaction volume and reduces optical coupling. To fully realize their potential, photonic structures that concentrate light into atomic-scale regions with minimal loss are required. Here, an ultrathin freestanding photonic membrane tailored for integrating atomic-layer and 2D materials is introduced. Owing to its substrate-free geometry, the membrane provides strong field confinement, restores out-of-plane symmetry, and suppresses radiative leakage. The design also enables Å-level tuning of high-Q resonances, where even a single ALD cycle produces a clearly measurable shift, demonstrating sensitivity to atomic-scale dielectric thickness variations.
Due to the strong field confinement and substrate-free geometry, the membrane effectively serves as a platform for transition metal dichalcogenide (TMD) monolayers such as WS2, WSe2, and MoS2, enabling their excitonic and nonlinear responses to couple efficiently to the membrane resonances. The membrane supports quasi-bound states in the continuum (quasi-BICs) that confine light around the monolayer and enhance exciton–photon coupling, resulting in clear increases in photoluminescence and second-harmonic generation (SHG) across a large area. The stronger SHG further enables polarization-resolved mapping of crystal orientation and grain boundaries. SHG spectroscopy also reveals several narrow peaks associated with different quasi-BIC modes, confirming resonant nonlinear enhancement on this freestanding membrane and demonstrating Å-level resonance engineering and large-area uniform enhancement—opening pathways toward advanced 2D material nanophotonic, quantum, and nonlinear photonic devices.

*** You all are welcome to join !!!
Ion-beam engineered silicon for room-temperature photodetection and monolithic integration at telecom wavelengths
※Speaker :Dr. Yonder Berencen/ Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
※Host : Prof. Guo-En Chang 張國恩教授 (Department of Microelectronics)
※Date : 2025-10-14 (Tuesday)
※Time : 10:30~11:30am
※Location :R546, Engineering Building 5, NYCU (GuanFu Campus) 工程五館5樓546室
※Abstract: Photonic integrated circuits (PICs) are widely recognized as a cornerstone for next-generation information technologies, offering orders-of-magnitude improvements in transmission speed, bandwidth, and energy efficiency compared to conventional electronics [1]. A critical building block of PICs is the photodetector operating in the optical telecommunication bands (1260-1625 nm), where silicon’s intrinsic transparency has traditionally necessitated hybrid integration of materials such as germanium [2,3]. However, this approach introduces major fabrication and cost challenges that limit scalability.
In this talk, I will present a new strategy that leverages ion-beam engineering of deep-level impurities in silicon to realize a high-performance, all-silicon, waveguide-coupled photodetector operating at room temperature in the telecom C band [4]. By driving dopant concentrations close to the solid- solubility limit, ion implantation enables efficient sub-bandgap absorption while preserving electronic transport properties. The resulting devices achieve a responsivity of 0.56 A/W, an external quantum efficiency of 44.8%, a bandwidth of 2 GHz, and a noise-equivalent power of 4.2×10-10 W/Hz1/2 at 1550 nm, performance metrics that meet the stringent requirements of optical communication systems.
Our results establish ion implantation as a scalable and CMOS-compatible pathway to monolithically integrate telecom-wavelength photodetectors into silicon PICs, addressing a long-standing challenge in silicon photonics. Beyond photodetection, this work illustrates how ion-beam techniques can unlock new functionalities in silicon, opening avenues for photonic quantum technologies and advanced optoelectronic integration.

***********************************************************************
▼▼▼ 2025 TSMC校園徵才計畫 ▼▼▼
實體|就業博覽會► 2025/03/15(六)
與台積學長姐&HR面對面聊聊,了解不同科系對應到的台積職務、工作型態、學習應用、職涯發展。
親臨現場參與活動,完成履歷投遞即可獲「好禮雙重送」!!!
好禮一|台積電 限量磁吸充電線(數量有限,贈完為止)
好禮二|當日下午抽出 蘋果iPad平板電腦(款式隨機)
線上|徵才說明會► 2025/03/18(二)中文, 03/25(二)日文, 03/27(四)中文, 03/28(五)英文
掌握台積趨勢、職缺資訊及投遞履歷Tips!(線上說明會活動,採事先報名)
活動辦理於中午時段 12 : 15-13 : 15,報名後系統將於活動前1日系統自動寄發活動Teams會議連結。
活動海報:活動海報
線上徵才活動總覽:報名請點我

日本早稻田理工學院說明會
活動資訊:
國科會114年度「大專學生研究計畫」開始接受申請(校內至114.2.18止)
一、依國科會113年12月25日科會綜字第1130088064號函辦理。
二、請申請人先行上網註冊,將歷年成績證明正本掃描成彩色電子檔後上傳,以利辨識,請確認個人基本資料及學術著作資料是否為最新資料,於線上完成相關作業後,將申請案「繳交送出」至就讀系所主管;待系所主管(或授權系所人員)線上「確認」後,再請指導教授於網路上傳「指導教授初評意見表」、勾選「遵照學術倫理規範」並「彙整送出」同意指導;最後由本組上線確認及「彙整送出」,完成線上申請作業。
三、申請學生之系所主管(或授權系所人員)請以各系所之國科會線上申辦系統行政作業帳號及密碼登入,登入後請確認申請人資格是否符合本計畫作業要點第三點之規定,計畫研究期間申請人需為學生身份,並請檢視上傳資料是否完整清晰及申請書表C802內容是否符合以10頁為限(參考文獻不計)之規定。
四、請符合資格之申請人於國科會網頁完成線上作業,由系所單位窗口(於學籍成績管理系統)確認學生在學資格後,列印系統頁面申請人名冊1份(經系所單位主管、一級主管核章)並依序檢附申請人完成學術倫理教育課程訓練至少6小時證明文件,於校內截止收件日前,將上述資料送陽明校區計畫業務一組李筱君小姐;交大校區計畫業務二組陳琪惠、許雅如小姐彙辦。
五、計畫申請相關文件請至國科會網頁/學術研究/補助獎勵辦法及表格/補助專題研究計畫/大專學生研究計畫項下查詢下載,其他注意事項請詳參來文及作業要點說明,或請至國科會網頁「動態資訊」項下「計畫徵求專區」查詢下載(網址: https://www.nstc.gov.tw/ )。